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Abstract  

Despite major depressive disorder (MDD) being the leading cause of disability worldwide, the 

exact characterization of its neural bases and the development of reliable biomarkers are still 

at an early stage. A possible solution lies in multimodal analysis approaches, which integrate 

cross-modal data to investigate the relationship between structural and functional network 

disruptions, potentially improving the accuracy of machine learning (ML) models for 

individual-level predictions. In this study, we employed a data fusion unsupervised ML method 

called transposed Independent Vector Analysis (tIVA) to investigate joint functional and 

structural brain networks to classify MDD. To this aim, the amplitude of low-frequency 

fluctuations (ALFF) and gray matter density (GMD) of 461 participants (MDD = 226, HC = 

235) were taken into consideration. The analysis revealed a multimodal link between reduced 

functional activity in the cerebellum and structural deficits in subcortical regions (primarily 

including the anterior cingulate cortex (ACC) and insula) implicated in emotional regulation, 

highlighting how these structural and functional changes can mutually influence and reinforce 

each other.  Moreover, enhanced functional activity was found in dorsomedial prefrontal areas 

of the default mode network (DMN), with concurrent reduced activity in dorsolateral prefrontal 

regions of the executive control network (CEN). Importantly, a Random Forest (RF) classifier, 

which identified the same areas as important classification features, achieved a 69.89% 

accuracy in distinguishing MDD patients from HC. These findings underscore the value of 

combining multimodal data-driven approaches to investigate the neural basis of MDD, possibly 

enhancing diagnostic precision and advancing precision psychiatry. 

Keywords: Major Depressive Disorder; Machine Learning; Data Fusion; ALFF; transposed 

Independent Vector Analysis. 
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Introduction  

Major depressive disorder (MDD) is one of the most severe and prevalent neuropsychiatric 

disorders, affecting over 300 million people globally (World Health Organization, 2017). 

Prospective studies indicate that more than 30% of individuals may experience this mood 

disorder during their lifetime (Moffitt et al., 2010). MDD is characterized by a complex 

symptomatology manifestation that includes a persistent low or depressed mood, anhedonia, 

chronic fatigue, pervasive feelings of guilt or worthlessness, and recurring thoughts of death 

(Marx et al., 2023). Beyond MDD's profound impact on patients' personal quality of life, its 

societal burden is equally alarming. In 2019, the economic cost of this disorder was estimated 

at $333.7 billion in the United States alone (Greenberg et al., 2023), driven by healthcare costs, 

productivity losses, household-related expenses, presenteeism and absenteeism.  Moreover, 

recent evidence suggests that this figure could worsen due to a significant increase in the 

number of MDD cases following the COVID-19 pandemic (Santomauro et al., 2021). 

Although extensive research has been conducted on this mental disorder, its diagnosis and 

treatment remain challenging due to the absence of specific biomarkers (Fritz et al., 2017; 

Mousavian et al., 2021) and a lack of consensus in distinguishing clinical from subclinical 

manifestations (Marx et al., 2023). Indeed, it is well-documented how time-consuming and 

operational diagnostic criteria based on the Diagnostic and Statistical Manual of Mental 

Disorders Fifth Edition Text Revision and the International Classification of Diseases 11th 

Revision can be ineffective, resulting in misdiagnoses and significant delays in appropriate 

treatment (Fritz et al., 2017). 

However, remarkable opportunities are emerging to develop personalized assessments and 

neurobiologically grounded models of pathological mental conditions, driven by the 

convergence of a growing number of open-access neuroscientific datasets and new artificial 

intelligence (AI) methodologies (Masdeu, 2011; Sui et al., 2012; Winter et al., 2022). In this 

direction, neuroimaging-based AI may enable a more objective characterization and 

explanation of psychiatric conditions and ultimately enhance clinical decision-making in early 

diagnosis, prognosis, and treatment (Eyre et al., 2016; Marx et al., 2023). 

Literature review and current limitations  

Previous investigations on MDD have reported several structural and functional abnormalities, 

leading researchers to define this mental condition as a network-based disorder. Crucial for this 
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conceptualization is the role of specific neural hubs, whose disruption can lead to maladaptive 

integration and segregation processes across the brain, contributing to this disorder's cognitive 

and emotionally heterogeneous symptomatology (Menon, 2011; Chai et al., 2023). For 

instance, self-negative rumination has been associated with altered activity in prefrontal 

regions of the default mode network (DMN) (Hamilton et al., 2015), cognitive control deficits 

have been linked to reduced central executive network (CEN) activity (Menon, 2011), and 

attention and affective processing deficits have been related with structural and functional 

abnormalities in the salience network (SN) (Menon, 2011). Particularly, resting-state 

functional magnetic resonance imaging (rs-fMRI) studies consistently report functional 

abnormalities in regions such as the prefrontal cortex (PFC) (Jing et al., 2013), cerebellum 

(Wang et al., 2012; Gong et al., 2020), and limbic areas (Jing et al., 2013; Zhong et al., 2019). 

Among rs-fMRI indices, the amplitude of low-frequency fluctuations (ALFF) has been widely 

used to evaluate spontaneous brain activity related to blood oxygen level-dependent (BOLD) 

signals (Yan et al., 2017). This metric has proven to be reliable and stable in characterizing 

different neuropsychiatric conditions, such as schizophrenia (Athanassiou et al., 2022), post-

traumatic stress disorder (Disner et al., 2018), MDD, and bipolar disorder (Gong et al., 2020). 

Specifically, ALFF patterns in MDD result to be increased in the superior frontal gyrus (SFG) 

and insula and decreased in the cerebellum and occipital cortex, reflecting disruptions in self-

referential processing, affective regulation and sensory integration (Gong et al., 2020). 

Moreover, meta-analytic evidence highlights ALFF abnormalities and co-localized structural 

deficits in the subgenual anterior cingulate cortex (ACC), hippocampus, and amygdala, regions 

critical to emotion regulation and memory processing (Gray et al., 2020). 

Additional evidence supporting the critical involvement of the PFC in the pathophysiology of 

depression comes from proton magnetic resonance spectroscopy (1H-MRS) studies, which 

revealed that altered glutamate/glutamine (Glx) levels may be implicated in this condition 

(Moriguchi et al., 2019). On the other hand, structural analyses consistently indicate reduced 

gray matter (GM) volume in the insula and cingulate cortex of MDD patients (Wise et al., 

2017; Sha et al., 2019; Schmaal et al., 2020), while cross-disorder studies confirm 

transdiagnostic GM reductions in cortical and subcortical regions, particularly the orbitofrontal 

cortex (OFC) and anterior ACC (Yoshimura et al., 2014; Opel et al., 2020). Interestingly, a 

recent genome-wide meta-analysis has highlighted that these structural and functional 

abnormalities may be associated with 102 independent genetic variants linked to depression. 

These alterations contribute to disrupted synaptic structure and neurotransmission, particularly 
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in the PFC and ACC, regions frequently implicated in MDD pathophysiology (Howard et al., 

2019). 

However, three significant limitations in the existing literature impede the identification of 

clear biomarkers for major depressive disorder (MDD) and contribute to the replication failures 

observed in depression research. The first limitation arises from the predominant use of mass 

univariate analyses in most prior studies, which are unable to account for the complex, 

network-based nature of brain-behavior relationships (Calhoun and Sui, 2016; Winter et al., 

2022). This limitation may help explain the inconsistencies observed in earlier findings. The 

second limitation lies in the lack of generalizability in prior research, as predictive models were 

neither derived nor statistically validated (Wolfers et al., 2020; Guo et al., 2024). Consequently, 

previous findings are closely tied to the specific samples studied, without evaluating their 

applicability to other populations. The third limitation concerns the partial characterization of 

the neural bases of depression, which has predominantly relied on one modality-specific 

comparison per time. This approach fails to address the intricate and multifaceted nature of 

depression that affects several aspects of brain function and structure (Sui et al., 2023). Indeed, 

modern neuroscientific perspectives emphasize that neurological and psychiatric disorders can 

be better understood by examining both widespread voxel alterations and multiscale 

interactions across structural, functional and genetic levels (Biswal et al., 2010; van den Heuvel 

et al., 2019). Consequently, combining multimodal imaging techniques has shown the 

possibility to uncover robust and convergent differences in brain morphology and function by 

integrating cross-modal data (Meda et al., 2014; Gray et al., 2020; Sui et al., 2023). The final 

aim is to reveal how brain structure and function influence each other, thus identifying the 

physiological aspects that drive maladaptive cognition and behavior (Sui et al., 2012, 2014). 

Previous investigations have attempted to overcome some key limitations. For instance, several 

studies have employed single modality ML classification methods primarily using rs-fMRI and 

sMRI features, with promising results (Gao et al., 2018; Bondi et al., 2023). However, most of 

these models were often trained and tested on small sample sizes and suffer from inconsistent 

methodologies, ultimately not providing significant advancement for translating neuroimaging 

biomarkers into clinical practice (Gao et al., 2018; Bondi et al., 2023). Other studies tried to 

address the limitations of single-modality studies using multimodal data fusion techniques. On 

the one hand, Qi et al. (Qi et al., 2018) used a multimodal canonical correlation analysis with 

a joint independent component analysis fusion-with-reference model (mCCAR+jICA) to 

combine fractional ALFF, gray matter volume, and fractional anisotropy and miR-132 blood 
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levels to investigate the interrelationship between epigenetic factors and different brain features 

in unmedicated patients with MDD. The study found that miR-132 dysregulation was linked 

to reduced activity and structural deficits in the fronto-limbic network but lacked predictive 

capability. On the other hand, He et al. (He et al., 2017) used a completely data-driven 

multimodal fusion method (mCCA + jICA) to jointly analyze functional connectivity and 

structural network alterations in MDD, achieving higher ML-based diagnostic accuracy in 

distinguishing patients from controls compared to single-modality ML models. Similarly, Guo 

et al. (Guo et al., 2024) combined individualized functional connectivity (IFC) from rs-fMRI 

and individualized structural connectivity (ISC) from diffusion tensor imaging (DTI). 

Although both studies employed advanced analytical methods and achieved promising 

diagnostic accuracies, they were limited by small sample sizes or the absence of cross-site 

validation, which restricted their generalizability to real-world applications.  

Key aims of this manuscript 

Acknowledging these limitations, in the present study, we employed a whole-brain, data-driven 

multivariate fusion approach called transposed Independent Vector Analysis (tIVA) to 

investigate both joint and modality-unique function-structure network alterations in gray matter 

density (GMD) and ALFF in a relatively large cohort of MDD patients and HC. tIVA 

represents a significant advancement over previous fusion methods, such as mCCA+jICA, by 

addressing critical technical limitations inherent to these approaches (Lee et al., 2008). Unlike 

mCCA+jICA, which relies on maximizing linear correlations between modalities and is 

susceptible to random permutation ambiguity, tIVA jointly models cross-dataset dependencies 

through Source Component Vectors (SCVs) and leverages multivariate statistical 

dependencies, ensuring more robust and accurate source separation, particularly in multisite 

studies (Luo, 2023). Moreover, by leveraging structural and temporal covariation, tIVA 

captures independent brain networks, offering greater biological plausibility compared to atlas-

based parcellations (Beckmann et al., 2005; Grecucci et al., 2023; Sui et al., 2023). Finally, this 

analysis was chosen for its capability to investigate alterations in brain network components 

that differentiate the two groups, using a noninvasive and task-free approach that removes 

performance-related confounds (Biswal et al., 1995). 

Second, to enhance the generalizability of our findings to new cases and address the limitations 

of traditional group-level statistics inference methods, we employed a supervised machine 

learning (ML) classifier to extract a predictive model of MDD. A Random Forest approach was 
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used to this aim. This approach was chosen not only for its robustness in handling high-

dimensional data (Breiman, 2001; Hastie et al., 2009), but also for the possibility of identifying 

the most significant brain structural and functional components predictive of MDD pathology.  

Building upon prior investigations (Qi et al., 2018; Gong et al., 2020; Gray et al., 2020; Opel 

et al., 2020), we expect to identify joint and modality-specific network components 

distinguishing MDD patients from HC. Precisely, we predict structural reductions in 

subcortical areas, including the insula and cingulate cortex, and functional reductions within 

cerebellar regions among MDD patients. Furthermore, we anticipate alterations in PFC 

activity, characterized by hyperactivity in the medial regions of the DMN and hypoactivity in 

the prefrontal lateral regions of the CEN. Notably, the primary benefit of conducting a joint 

analysis is elucidating abnormalities' interdependence across modalities. Indeed, by leveraging 

joint components, this approach will reveal how deficits in one domain may influence or relate 

to those in another, offering a more integrated understanding of brain dysfunction in MDD. 

Materials and methods  

SRPBS Multi-disorder MRI Dataset  

Dataset and Participants 

Data collection and sharing for this project was provided by the DecNef Department at the 

Advanced Telecommunication Research Institute International, Kyoto, Japan and selected 

from the SRPBS Multi-disorder MRI Dataset (restricted version - https://bicr-

resource.atr.jp/srpbs1600/). The dataset includes rs-fMRI and sMRI scans from a large sample 

of patients and controls who were clinically assessed by expert clinicians or teams according 

to DSM-IV-TR or DSM-5 criteria (Tanaka et al., 2021). To ensure a high standard of diagnostic 

reliability, the Mini-International Neuropsychiatric Interview (MINI) (Sheehan et al., 1998) 

was administered to participants in the Hiroshima, Showa and Tokyo sites. This procedure also 

ensured the exclusion of psychiatric disorders in the control group. All participants provided 

written informed consent for anonymous data sharing. 

In this study, we included patients with major depression and health controls (HC). The two 

groups were balanced based on demographic characteristics (sex and age), and the data 

collection site used propensity score matching, resulting in an initial sample of 510 
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(MDD=255) participants. To ensure that only high-quality data was included in further 

analysis, a stringent quality control protocol excluded structural and functional brain images 

with artifacts, brain lesions, or abnormalities. This led to a final sample of 461 participants for 

the current study. Table 1 summarizes the demographic characteristics of participants of the 

included sample. 

MRI acquisition 

Structural and functional images were acquired using six 3T MRI scanners across multiple 

sites, according to the standardized SRPBS MRI acquisition guidelines (Tanaka et al., 2021). 

These protocols introduced recommendations for functional and structural image acquisition. 

For instance, rs-fMRI recommendations included but were not limited to full-brain coverage 

with particular attention to the cerebellum, minimized repetition time (TR), and a focus on 

prefrontal regions associated with psychiatric disorders. Similarly, structural imaging adhered 

to J-ADNI2 standards, emphasizing high-resolution isovoxel acquisition (1 × 1 × 1 mm) and 

full-brain coverage with sufficient margins. Moreover, during the scanning sessions, 

participants were instructed to remain relaxed, focus on a central crosshair displayed on a gray 

background, avoid engaging in specific thoughts or falling asleep, and minimize movement of 

their heads and trunks. Detailed imaging parameters for each site are provided in Table S1. 

MRI data processing 

First-level preprocessing: sMRI and rs-fMRI 

Multimodal brain imaging data were preprocessed following a rigorous quality control 

procedure resembling the Di and Biswal pipeline (Di and Biswal, 2023).  

rs-fMRI preprocessing 

Resting-state fMRI preprocessing steps were all performed in SPM12 

(https://www.fil.ion.ucl.ac.uk/spm/)  within MATLAB 2022b environment and included 

discarding the initial dummy scans, realigning to the first image, coregistering to the anatomical 

image, spatial normalization to MNI space, and spatial smoothing with an 8-mm FWHM 

isotropic Gaussian kernel. A stringent quality control protocol was employed, which included 

visual assessments for issues such as ghost artefacts, lesions, poor brain coverage, 

coregistration misalignments and normalization. Additionally, temporal domain issues, 

including head motion and other physiological noises, were evaluated. Specifically, framewise 
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displacement (FD) was calculated based on rigid body transformation results to exclude 

participants with excessive head motion (FD > 1.5 mm or 1.5°). Overall, this procedure ended 

with the exclusion of 25 out of 510 participants. 

Finally, the amplitude of low-frequency fluctuation (ALFF) maps was calculated for each 

participant from the preprocessed time series using the DPARSF-A 

(https://rfmri.org/DPARSF) (Yan and Zang, 2010). To do this, we regress out nuisance 

covariates, including mean signals from WM and CSF, as well as the Friston 24-parameter 

model (Friston et al., 1996), followed by bandpass filtering within a frequency range of 0.01–

0.1 Hz to mitigate the impact of low-frequency drifts and high-frequency physiological noise 

(Yu-Feng et al., 2007). 

sMRI preprocessing 

Raw T1-weighted images were visually inspected across multiple slices in the x, y, and z planes 

to exclude scans with artifacts such as head motion, ghosting, structural abnormalities or 

lesions. Preprocessing was performed using CAT12 (http://dbm.neuro.uni-jena.de/cat/), an 

extension of SPM12 toolbox in the MATLAB 2022b environment (The MathWorks Inc., 

2022). After the manual re-orientation of the anterior commissure as the origin, images were 

segmented into GM, white matter (WM), and cerebrospinal fluid (CSF).  After segmentation, 

images were registered using Diffeomorphic Anatomical Registration Through Exponential 

Lie algebra (DARTEL) (Ashburner, 2007), normalized to Montreal Neurological Institute 

(MNI) standard space and smoothed with a 12-mm full-width at half-maximum (FWHM) 

isotropic Gaussian kernel. Given the multicenter design of the study, the CAT Quality Control 

framework was used to ensure consistent output preprocessing quality across scanners. As an 

outcome of this quality control procedure, an additional 24 participants were excluded from 

further analysis. 

Transposed Independent Vector Analysis (tIVA) 

A Transposed Independent Vector Analysis with a prior generalized Gaussian Distribution 

(tIVA-GGD) (Adali et al., 2015) was used to decompose individual whole-brain maps of GMD 

and ALFF into independent structural and functional networks. The tIVA-GGD, a data-driven 

multimodal blind source separation (BSS) technique, was chosen over other ICA algorithms or 

simple univariate methods for its capability of enhancing the identification and characterization 

of complex brain circuits that interact across different imaging modalities.  Indeed, unlike 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 12, 2025. ; https://doi.org/10.1101/2025.04.09.25325506doi: medRxiv preprint 

https://rfmri.org/DPARSF
http://dbm.neuro.uni-jena.de/cat/
https://doi.org/10.1101/2025.04.09.25325506
http://creativecommons.org/licenses/by/4.0/


10 

 

standard ICA, IVA leverages statistical dependence across modalities while maintaining source 

independence within each modality (Lee et al., 2008; Laney et al., 2015; Luo, 2023). 

Furthermore, IVA incorporates higher-order statistics into the multiset canonical correlation 

analysis (mCCA) framework, offering a generalized approach that merges the strengths of both 

independent component analysis (ICA) and canonical correlation analysis (CCA) (Adali et al., 

2015). The Minimum Description Length (MDL) method was used to estimate the number of 

components for each modality,(Li et al., 2007) yielding eight components. All analyses were 

conducted using the Fusion ICA Toolbox (FIT; version 2.0e; 

https://trendscenter.org/software/fit/).  

The loading coefficient source matrix was reconstructed as a 3D image and scaled to a unit z-

score for better visualization. Component 3, identified as noise in the GM component, was 

excluded from further analysis. Anatomical labels and stereotaxic coordinates were obtained 

from clusters exceeding a threshold of z = 3.5 by linking the IVA output images to the Talairach 

Daemon database (http://www.talairach.org/daemon.html). The results were then rendered 

using Surf Ice (https://www.nitrc.org/projects/surfice/) for better visualization. Refer to Figure 

1 for a visual representation of the analysis workflow. 

Logistic regression 

A forward logistic regression model was implemented using JASP software (version 0.18.3.0; 

JASP Team, 2021) to identify significant transformed Independent Vectors (tIVs) predictors 

for distinguishing participants in the two groups. This method was chosen over backward and 

bidirectional stepwise regression due to its ability to incrementally build models based on 

statistical significance, thereby reducing the risk of overfitting. Indeed, forward logistic 

regression involves iteratively adding variables to an initially empty model based on their 

statistical significance, enabling robust and efficient feature selection. 

Predictive Model 

A supervised ML Random Forest classifier was employed to distinguish MDD patients from 

HC using tIVs as input features. RF was chosen over other supervised algorithms due to its 

robustness in handling overfitting and its superior performance with smaller sample sizes 

(Breiman, 2001; Hastie et al., 2009). Additionally, RFs implement feature importance ranking 

by measuring the contribution of each predictor to impurity reduction, thereby offering 

valuable interpretability in identifying brain regions as the most predictive of MDD. Functional 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 12, 2025. ; https://doi.org/10.1101/2025.04.09.25325506doi: medRxiv preprint 

https://doi.org/10.1101/2025.04.09.25325506
http://creativecommons.org/licenses/by/4.0/


11 

 

and structural independent vectors (tIV-RS 1,2,4,6,7,8 and tIV-GM 1,2,4,6,7,8) were 

standardized separately for training and testing to prevent data leakage. The slight class 

imbalance in the dataset was effectively addressed using the Synthetic Minority Over-sampling 

Technique (SMOTE) (Chawla et al., 2002), which generates synthetic samples for the minority 

class through interpolation between existing data. This approach ensured that the RF model 

was trained on a balanced dataset, improving its generalisation ability across both classes. The 

implementation was from the imbalanced-learn Python package (Lemaître et al., 2017). 

Recursive Feature Elimination was applied to iteratively identify the most significant predictors 

by training the RF model and removing features that contributed the least to impurity reduction, 

a measure of data uncertainty. This process retained the most informative tIVs, enhancing 

model interpretability while ensuring robustness. The model's performance was evaluated 

using metrics such as accuracy, precision, recall, specificity, F1 score, and the area under the 

Receiver Operating Characteristic (ROC) curve (AUC). An 80-20 train-test split was applied 

to ensure sufficient data for model training and evaluation. The Optuna framework optimised 

RF hyperparameters (Akiba et al., 2019), focusing on parameters like the number of trees, 

maximum depth, and minimum samples per split to enhance cross-validated accuracy. 

Additionally, nested cross-validation (5-fold inner for tuning and 5-fold and 10-fold outer for 

evaluation) was used to reduce partitioning bias and assess generalizability. Finally, 

permutation testing with 1,000 iterations further validated the model by ensuring the accuracy 

was not due to random label configurations (Ojala and Garriga, 2009). 

Data availability  

The original data are available from the DecNef Department at the Advanced 

Telecommunication Research Institute International, Kyoto, Japan upon request. 

Results  

rs/s-MRI networks separating MDD from HC 

The logistic regression model with the strongest explanatory value and significant 

improvement (AIC = 599.725, BIC = 620.392, ΔΧ² = 4.185, P = 0.041) achieved moderate 

accuracy (62.90%), exceeding the 50% random baseline in this balanced dataset.  The model 
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identified one joint component (tIV-GM7 and tIV-RS7) and two unique components (tIV-RS1 

and tIV-RS2) as predictors. 

The significant predictors were the joint-group differentiating components tIV-GM7 (P < 

0.001) and tIV-RS7 (P < 0.001). Specifically, reduced subcortical GM concentration in tIV-

GM7 regions, including the insula and cingulate cortex, significantly increases the probability 

of being diagnosed with MDD (β = -0.387, SE = 0.107, Wald = 13.174, OR = 0.679). Similarly, 

tIV-RS7, representing functional activity in the cerebellum, showed that reduced resting-state 

activity in these regions predicts a higher probability of MDD diagnosis (β = -0.371, SE = 

0.106, Wald = 12.350, OR = 0.690). 

The modality-unique components tIV-RS1 (P = 0.004) and tIV-RS2 (P = 0.037) were also 

significant. Notably, increased tIV-RS1 resting-state activity in regions primarily 

encompassing the dorsomedial prefrontal cortex (dmPFC) is associated with a higher 

probability of MDD diagnosis (β = 0.261, SE = 0.100, Wald = 6.761, OR = 1.298). Conversely, 

decreased tIV-RS2 resting-state activity in regions predominantly involving the dorsolateral 

prefrontal cortex (dlPFC) heightened the likelihood of MDD diagnosis (β = -0.202, SE = 0.100, 

Wald = 4.618, OR = 0.817). Table 2 and 3 provides the complete Talairach coordinates for all 

significant tIVs, while Figures 2 and 3 visually represent the identified significant components. 

RF predictive model 

The RF classifier effectively distinguished participants in the two groups, with tIV-GM7 and 

tIV-RS7 emerging as the most important predictors, thus confirming the regression results, 

followed by tIV-RS8, tIV-RS2, tIV-GM8, and tIV-GM4 (Figure 4A), partially aligning and 

extending regression results. Feature importance analysis (Table S2), complete Talairach 

coordinates (Table S3), and visual representation of additional components (Figure S1, Figure 

S2) are provided in the supplementary materials. The model achieved a training accuracy of 

81.08% (HC Precision/Recall: 80.10% / 82.70%; MDD Precision/Recall: 82.12% / 79.46%) 

and a test accuracy of 69.89% (HC Precision/Recall: 75.00% / 66.00%; MDD Precision/Recall: 

65.31% / 74.42%). Figure 4B presents the confusion matrix for these results. Cross-validation 

further validated the model's performance (5-fold: 69.94%; 10-fold: 68.00%) as shown in 

Figure 4C. Permutation tests confirmed the statistical significance of these accuracies (P < 

0.001), while ROC curve analysis (Figure 4D) supported good class separation.  
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Discussion  

This study employs a data-driven tIVA multimodal fusion approach to examine interactions 

between structural (GMD) and functional (ALFF) alterations, offering deeper insights into the 

neurobiological mechanisms of MDD. Data from 461 participants, matched for age, sex, and 

MRI acquisition site, were used. The analysis identified key distinctive features of MDD across 

cerebellar regions, the SN and two modality-unique components. Finally, a Random Forest 

classifier identified tIV-RS2, tIV-RS7, tIV-RS8, tIV-GM4, tIV-GM7, and tIV-GM8 as the 

most significant predictors of MDD, achieving a test accuracy of 69.89%. Among these, tIV-

GM7 (SN) was the most critical feature, followed by tIV-RS7 (cerebellum) and other joint and 

modality-unique components. 

Joint components: Cerebellum and SN  

Our results showed a key joint tIV-7 component differentiating MDD from HC, revealing 

underlying associations between functional disruptions in cerebellar regions (tIV-RS7) and 

structural deficits in the SN (tIV-GM7). Notably, MDD participants exhibited both reduced 

GM concentration in the SN and reduced cerebellar activity. 

Traditionally recognized for its role in motor control (Hariri, 2019), the cerebellum has been 

investigated for its involvement in neuropsychiatric conditions, such as the cerebellar cognitive 

and affective syndrome (Schmahmann et al., 2007). Indeed, a growing body of evidence has 

elucidated how this region plays a significant role in a variety of non-motor functions, including 

mood regulation, emotion processing, and social cognition (Stoodley and Schmahmann, 2010; 

Adamaszek et al., 2017; Depping et al., 2018; Schmahmann, 2019; Van Overwalle et al., 2020; 

Zanella et al., 2022). This broader role of the cerebellum is corroborated by connectivity 

analyses, revealing its functional interaction with all major brain networks, including the SN 

(Seeley et al., 2007; Van Overwalle et al., 2015).  

In MDD, consistent evidence points to structural (Balcioglu and Kose, 2018) and functional 

(Alalade et al., 2011; Guo et al., 2013; Depping et al., 2018) disruptions in cerebellar 

components. Although the exact role of cerebellar dysfunctions in depressive symptoms 

remains debated (Phillips et al., 2015), they appear to strongly impact mood-related 

information processing, leading to an intensification of negative mood symptomatology 

(Clausi et al., 2019). These considerations make the cerebellum a potential target for 

therapeutic intervention in depression (Depping et al., 2017; Miterko et al., 2019). On the other 
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hand, structural results are supported by findings from multi-centre studies emphasizing the 

SN’s pivotal role in depressive psychopathology (Ancelin et al., 2019). On top of that, the 

structural abnormalities observed correspond to gene expression changes associated with 

MDD, as Qi et al. (Qi et al., 2018) elucidated. Using a multimodal neuroimaging and 

transcriptomics fusion model (MCCAR+jICA), researchers identified microglia and neuronal 

transcriptional changes as key contributors to structural and functional integrity issues in 

fronto-limbic network regions, including the dlPFC and ACC.      

These relevant works provide compelling evidence-based framing, providing additional 

validity to our data-informed insights about the cerebellum and SN patterns. 

Modality unique components: DMN and CEN    

Two modality-unique components — tIV-RS1 and tIV-RS2 — significantly contributed to 

differentiating MDD patients from HC. tIV-RS1 primarily includes brain circuits within the 

dorsomedial prefrontal regions of the DMN, while tIV-RS2 is more associated with 

dorsolateral regions of the CEN. Interestingly, opposing activation patterns were observed, 

with MDD patients showing significantly increased activity in tIV-RS1 and decreased activity 

in tIV-RS2. 

The findings for the dmPFC component tIV-RS1 are consistent with previous studies that 

underscored the DMN’s critical involvement in MDD psychopathology, exhibiting enhanced 

functional connectivity and activity (Hamilton et al., 2015; Kaiser et al., 2015; Scheepens et 

al., 2020).  The DMN is a task-negative network engaged in introspective processes such as 

mind-wandering(Mason et al., 2007; Andrews-Hanna, 2012) and self-referential thought 

(Raichle et al., 2001; Whitfield-Gabrieli et al., 2011; Davey et al., 2016). It also contributes to 

emotional regulation (Pan et al., 2018), social cognition (Schilbach et al., 2008), and episodic 

memory (Spreng et al., 2009). By integrating these functions, the DMN supports the formation 

of a unified 'internal narrative,' allowing individuals to reflect on and make sense of their 

personal experiences (Menon, 2023). 

In people with MDD, the internal narrative often becomes overly negative and persistent, 

contributing to the development and reinforcement of rumination. This maladaptive 

psychological process has been linked to functional hyperactivation in the dmPFC subsystem 

of the DMN (Hamilton et al., 2011; Zhou et al., 2020) a finding corroborated by our results. 

Furthermore, alterations in the dmPFC appear to be related to impairments in mentalizing and 
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metacognition in MDD (Nestor et al., 2022), disrupting the ability to integrate social 

information with personal beliefs and emotions, as well as to understand others' mental states 

(Lieberman, 2007; Van Overwalle, 2009; Lombardo et al., 2010). This heterogeneous 

symptomatology of MDD has been explained by Scalabrini et al. (Scalabrini et al., 2020) as 

resulting from global connectivity disruptions, where hyperactivity of the DMN destabilizes 

non-DMN networks and exacerbates depressive symptoms. 

In contrast to DMN hyperactivity, our findings indicate a dlPFC hypoactivation in the CEN at 

the level of the tIV-RS2. The CEN plays a crucial role in task-positive functions such as 

cognitive control, goal-directed behaviour (Miller and Cohen, 2001; Fuster, 2006; Dalley et 

al., 2011) working memory,(D’Esposito and Postle, 2015), and spatial attention (Corbetta and 

Shulman, 2002). Disruptions in this network have been extensively reported across various 

psychiatric conditions, such as depression, Alzheimer’s disease, and schizophrenia (Brewin et 

al., 2010; Woodward et al., 2011; Zhao et al., 2019). Our findings of dlPFC hypoactivation are 

consistent with existing literature linking this region to deficits in attention, emotional 

processing, and self-referential processing in MDD (Lemogne et al., 2010; Sánchez-Navarro 

et al., 2014). Notably, different evidence suggests that dlPFC hypoactivity may significantly 

influence attentional and emotional biases, particularly by promoting an excessive focus on 

internally directed thoughts like rumination (Northoff, 2007; Plewnia et al., 2015). This 

reduced dlPFC is closely associated with disrupted connectivity with the subgenual anterior 

cingulate cortex (sgACC), a key region for emotional regulation. Given the disrupted dlPFC-

sgACC connectivity, transcranial magnetic stimulation (TMS) targeting the dlPFC has shown 

promise in alleviating MDD symptomatology, particularly in cases resistant to other therapies 

(Padberg and George, 2009; Fox et al., 2012; Weigand et al., 2018).  

Overall, the hypoactivity of the CEN and hyperactivity of the DMN in MDD reflect a disrupted 

balance between intra- and inter-network dynamics, leading to an unbalance between 

externally directed cognitive control and internally focused cognition (Sporns, 2013; Shine and 

Poldrack, 2018; Menon and D’Esposito, 2022). According to Menon’s triple network model of 

psychopathology, the SN is critical for switching between the DMN and CEN in response to 

external demands (Menon, 2011; Menon and D’Esposito, 2022). However, in MDD, aberrant 

integration and segregation processes in SN hubs such as the dorsal anterior cingulate cortex 

(dACC) and anterior insula (AI) impair this switching process, further exacerbating cognitive 

and emotional dysfunctions (Dosenbach et al., 2008; Seeley, 2019; Krönke et al., 2020; Caria 

and Grecucci, 2023). This breakdown can be further understood through the co-occurrence of 
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structural and functional abnormalities identified in this study. Structural deficits in the SN 

impair its ability to regulate dynamic switching between the DMN and CEN, leading to 

dysfunction in cerebellar regions critical for mood and cognitive regulation. In turn, reduced 

cerebellar activity exacerbates maladaptive feedback to cortical networks, intensifying the 

emotional and cognitive impairments central to MDD. These joint modality findings 

underscore the interconnected roles in pathological emotional regulation and cognitive 

processes central to MDD and the importance of integrating structural and functional data to 

elucidate the mechanisms underlying MDD psychopathology. 

In conclusion, the single-modality rs-fMRI results discussed are primarily consistent with the 

meta-analysis by Gong et al. which reported increased mPFC activity and reduced cerebellum 

activity among MDD patients (Gong et al., 2020). The structural results aligned with insights 

from single-modality and multimodal meta-analyses, which have identified overlapping 

structural abnormalities, such as reduced GMD in the SN (tIV-GM7), especially in the insula 

and anterior cingulate cortex (Gray et al., 2020; Opel et al., 2020).  

Interpretation of other insights   

The RF model corroborates tIV-GM7, tIV-RS7, and tIV-RS2 as critical brain components for 

distinguishing the two groups, achieving a test accuracy of 69.89%. In addition to these primary 

features, other components — tIV-GM4, tIV-RS8, and tIV-GM8 — were also identified as 

significant contributors to the RF model. tIV-GM4 involves regions such as the precuneus, 

cuneus, and thalamus, while the joint components, tIV-GM8 and tIV-RS8, contributed 

significantly to the classification model. This joint component reflects functional disruptions 

in posterior cortical regions (tIV-RS8) alongside structural abnormalities in the thalamus and 

cerebellar lingual gyrus (tIV-GM8). While these components did not emerge as significant 

predictors in the logistic regression analysis, their inclusion in the RF model underscores their 

relevance to the broader neural abnormalities underlying MDD.  

Considering these ML results, the multimodal fusion approach used here demonstrates the 

potential advantage of integrating both structural and functional features for a more nuanced 

and more accurate MDD prediction. Indeed, comparing our results to existing classification rs-

fMRI studies, our ML test performance is aligned with or surpasses studies using similar 

sample sizes (Bondi et al., 2023). Furthermore, our approach remains competitive against 

large-scale efforts, such as the ENIGMA consortium study by Belov et al., which reported 

balanced test accuracies between 52% and 63% using only structural data (Belov et al., 2024).  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 12, 2025. ; https://doi.org/10.1101/2025.04.09.25325506doi: medRxiv preprint 

https://doi.org/10.1101/2025.04.09.25325506
http://creativecommons.org/licenses/by/4.0/


17 

 

However, it is important to note that smaller-scale studies often report inflated accuracies — 

up to 95% in some cases — due to methodological flaws like improper cross-validation, data 

leakage, and overfitting (Flint et al., 2021; Bondi et al., 2023). These pitfalls underscore the 

critical role of robust validation and large independent test sets. Additionally, Belov et al. 

(Belov et al., 2024) highlighted the limitations of relying solely on sMRI in multi-site studies, 

which can result in poor classification performance. 

Limitation and Future Direction  

Notwithstanding the above valuable insights, this study has limitations. First, the relatively 

homogeneous Japanese cohort may limit the generalizability of the findings to other ethnic 

groups. While, to the best of our knowledge, this is the first multimodal fusion study of this 

type (ALFF+GMD) conducted on this population, the homogeneity of the sample may limit 

the generalizability of the results to other ethnic groups.  Specifically, population differences 

in MDD have been consistently documented, including variations in prevalence rates,(Ferrari 

et al., 2013) expression of psychosomatic symptoms (Ryder et al., 2008), and distinct risk genes 

(Bigdeli et al., 2017). As Chen et al. emphasized, a crucial future direction for large-scale 

projects will be to address cultural and ethnic disparities by incorporating cross-cultural 

samples through international collaborations (Chen et al., 2022b). Second, while multisite 

studies may introduce site-specific noise and scanner-related artifacts, they also provide an 

opportunity to train ML models under conditions resembling more closely real-world 

scenarios, enhancing results’ generalizability (Bento et al., 2022; Chen et al., 2022a). 

Moreover, to mitigate scanner batch effects, we employed tIVA, a highly robust and effective 

method for multisite studies, proven to extract reliable components under these conditions 

(Luo, 2023). The stable performance of our ML models, validated through cross-validation and 

permutation tests, further confirms the robustness of these findings to inter-site variability.  

Third, although the sample was balanced for age, sex, and acquisition site, other variables such 

as socioeconomic status, lifestyle, and medication treatment were not controlled due to the 

absence of this information in the original dataset. While the influence of these variables on 

brain structure and functional biomarkers remains debated (Enneking et al., 2020; Mohammadi 

et al., 2023; Zhao et al., 2023), they are increasingly recognized as critical factors in the 

development of ML models for clinical applications (Williams and Whitfield Gabrieli, 2024). 

Therefore, future multisite efforts should prioritize collecting such data to enhance models’ 

robustness and applicability. Finally, transdiagnostic fusion studies, such as Qi et al., which 
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identify shared brain networks across schizophrenia, MDD, and other conditions, may be 

preferred to provide valuable insights into overlapping and different neural mechanisms in 

psychiatric conditions (Qi et al., 2020). 

Conclusion 

The current study demonstrates a critical interaction between functional hypoactivation in 

cerebellar regions and structural deficits in SN regions in MDD, highlighting a central role of 

these multimodal alterations in the pathological emotional regulation and cognitive 

impairments characterizing this disorder. Furthermore, leveraging structural and functional 

independent vector components, a Random Forest classifier achieved nearly 70% accuracy in 

distinguishing MDD patients from HC. These findings highlight the potential of ML combined 

with data-driven fusion techniques for identifying neuroimaging biomarkers and advance 

precision diagnostics and treatment in clinical psychiatry.  
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Figure  

 

Figure 1. Multimodal Feature Extraction and Classification Pipeline. A data fusion 

unsupervised ML technique (tIVA) was used to decompose the brain into joint GM-ALFF 

independent networks after preprocessing structural and functional images. Afterwards, 

diagnosis labels were predicted using logistic regression and Random Forest classifier. 
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Figure 2. Joint functional and structural tIV-7 alterations in MDD. (A) Visual 

representation of tIV-RS7, revealing reduced ALFF (blue-light blue scale) in the cerebellar 

tonsil and inferior semi-lunar lobule among MDD patients. (B) Visual representation of tIV-

GM7, indicating reduced GM density (violet-blue scale) in regions of the SN among MDD 

patients. The violin plots on the right compare activation and GM concentration differences 

between controls and depressed patients.  
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Figure 3. Single-modality group-differentiating components tIV-RS1 and tIV-RS2.        

(A) Visual representation of tIV-RS1, highlighting hyperactivation (red-yellow scale) within 

the dmPFC among MDD patients. (B) Visual representation of tIV-RS2, indicating 

hypoactivation (blue-light blue scale) in the dlPFC among MDD patients. The violin plots on 

the right compare activation level differences between controls and depressed patients. 
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Figure 4. Visualization of Random Forest model performance. (A) Feature importance 

ranking, identifying the most influential features (GM7, RS7, RS6, RS2, GM6, and GM4) for 

classification. (B) Confusion matrix depicting true and predicted classifications for healthy 

controls (HC) and Major Depressive Disorder (MDD) patients in the test set. (C) Performance 

metrics (Accuracy, Precision, Recall, Specificity, and F1 Score) evaluated using 5-fold and 10-

fold cross-validation, demonstrating consistent results across both validation strategies. (D) 

ROC curves comparing model performance under 5-fold and 10-fold cross-validation. The x-

axis represents the false positive rate, and the y-axis represents the true positive rate. The 

diagonal dashed line represents the performance of a random classifier. 
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Tables 

Table 1. Sample characteristics. 

 HC (n=235) MDD (n=226) Statistics  p-Value 

Gender (male/female) 116/119 116/110 Χ2 = 0.11 0.74 

Age (years) 41.96 ± 13.44 42.39 ± 11.65 t = 0.372 0.71 

Site   Χ2 = 4.12 0.53 

HUH 51 49 Χ2 = 0.04 0.84 

HRC 19 15 Χ2 = 0.47 0.49 

HKH 22 29 Χ2 = 0.96 0.33 

COI 78 60 Χ2 = 2.35 0.13 

KUT 13 14 Χ2 = 0.04 0.85 

UTO 52 59 Χ2 = 0.44 0.51 

Abbreviations: HUH, Hiroshima University Hospital; HRC, Hiroshima Rehabilitation Center; HKH, Hiroshima Kajikawa Hospital; COI, 

Hiroshima COI; KUT, Kyoto University TimTrio; UTO, University of Tokyo Hospital. 
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Table 2. Talairach coordinates of joint-modality brain circuit associated with Major Depressive Disorder.  

Area Brodmann Area Volume (cc) Random Effects: Max Value (x, y, z) 

tIV-RS7  

Cerebellar Tonsil * 0.8/0.4 6.0 (-3, -50, -42)/4.7 (4, -52, -42) 

Lingual Gyrus 17, 18 1.5/1.9 5.5 (-1, -85, -10)/5.7 (3, -85, -10) 

Inferior Occipital Gyrus 17, 18 0.3/0.6 4.3 (-28, -85, -13)/5.6 (13, -92, -8) 

Precuneus 7, 19, 31 0.8/1.2 4.9 (-6, -78, 45)/5.4 (1, -74, 40) 

Fusiform Gyrus 18, 19 0.6/0.4 4.6 (-19, -90, -14)/5.4 (22, -91, -12) 

Cuneus 7, 17, 18, 19, 23, 30 3.1/2.2 5.3 (-1, -75, 37)/4.7 (1, -78, 20) 

Inferior Semi-Lunar Lobule * 0.4/0.1 4.8 (-1, -65, -37)/4.4 (1, -62, -37) 

Uvula of Vermis  * 0.2/0.1 4.4 (-1, -64, -33)/4.1 (1, -61, -34) 

Medial Frontal Gyrus 11 0.1/0.0 4.1 (-4, 60, -18)/-999.0 (0, 0, 0) 

Declive * 0.2/0.0 4.0 (-37, -82, -15)/-999.0 (0, 0, 0) 

Posterior Cingulate 30 0.1/0.3 3.5 (-7, -68, 10)/3.9 (9, -66, 13) 

Nodule * 0.1/0.0 3.9 (-7, -50, -30)/-999.0 (0, 0, 0) 

Precentral Gyrus 4, 6 0.0/0.3 -999.0 (0, 0, 0)/3.9 (31, -19, 66) 

Tuber * 0.1/0.2 3.8 (-34, -86, -27)/3.7 (33, -86, -27) 

Middle Occipital Gyrus 18 0.1/0.1 3.5 (-30, -90, 2)/3.8 (25, -85, -8) 

Uvula * 0.2/0.1 3.8 (-6, -64, -33)/3.6 (4, -64, -33) 

Pyramis * 0.1/0.0 3.6 (-39, -76, -34)/-999.0 (0, 0, 0) 

tIV-GM7  

Inferior Frontal Gyrus 13, 47 2.4/2.4 7.0 (-40, 15, -13)/6.7 (42, 15, -11) 

Superior Temporal Gyrus 22, 38 4.0/3.0 6.7 (-45, 11, -8)/6.8 (45, 13, -8) 

Insula 13 1.7/1.2 6.4 (-45, 8, -5)/5.4 (43, 7, -4) 

Sub-Gyral 13, 21 0.2/0.1 6.2 (-42, 8, -8)/4.6 (43, 1, -9) 

Extra-Nuclear 13 1.1/1.4 5.9 (-39, 11, -9)/5.8 (43, 7, -9) 

* 10 0.4/0.4 4.8 (0, 44, 30)/4.7 (1, 28, 11) 

Medial Frontal Gyrus 6, 8, 9, 10 1.2/1.7 5.4 (0, 42, 20)/4.9 (3, 42, 17) 

Anterior Cingulate 24, 25, 32, 33 2.1/1.9 5.4 (0, 36, 20)/5.0 (3, 41, 12) 

Caudate * 1.2/1.0 5.1 (-7, 8, 8)/4.7 (9, 9, 9) 

Third Ventricle * 0.0/0.5 -999.0 (0, 0, 0)/4.5 (0, -9, -1) 

Cingulate Gyrus 24, 32 1.0/1.0 4.2 (0, 13, 30)/4.4 (1, 21, 39) 

Lateral Ventricle * 0.5/0.4 4.3 (-3, 10, 2)/4.3 (3, 7, 2) 

Superior Frontal Gyrus 8, 9 0.6/0.3 4.2 (0, 20, 49)/4.1 (3, 55, 22) 

Uncus 28 0.1/0.1 3.6 (-27, 6, -20)/3.8 (28, 9, -19) 

Thalamus * 0.2/0.1 3.7 (-4, -3, 6)/3.5 (6, -10, 13) 

Note: Voxels with z-values greater than 3.5 were matched with the Talairach Daemon database to obtain anatomical labels and converted 
into MNI space. For each hemisphere, the maximum z-value and MNI coordinate are provided. The volume of voxels in each area is given in 

cubic centimetres (cc) (*) = area not recognized by standard Brodmann Area atlas. 
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Table 3. Talairach coordinates of single modality brain circuit associated with Major Depressive Disorder.  

Area Brodmann Area Volume (cc) Random Effects: Max Value (x, y, z) 

tIV-RS1  

Superior Frontal Gyrus 6, 8, 9, 10, 11 9.8/7.4 6.9 (-16, 44, 43)/6.5 (33, 62, -8) 

Middle Frontal Gyrus 6, 8, 9, 10, 11, 46, 47 6.3/5.7 5.7 (-28, 58, 21)/6.2 (39, 58, -8) 

Superior Temporal Gyrus 22, 38 0.4/0.3 5.6 (-50, 16, -8)/4.9 (52, 17, -8) 

Inferior Frontal Gyrus 9, 10, 45, 46, 47 1.6/1.1 4.9 (-40, 55, 0)/5.4 (49, 45, -1) 

Medial Frontal Gyrus 8, 9, 10 1.4/1.2 5.0 (-6, 50, 42)/4.5 (3, 57, 8) 

Cerebellar Tonsil * 0.1/0.0 3.6 (-12, -49, -40)/-999.0 (0, 0, 0) 

tIV-RS2  

Superior Frontal Gyrus 6, 8, 9, 10, 11 6.2/6.5 6.7 (-4, 59, -19)/7.9 (33, 62, -8) 

Middle Frontal Gyrus 6, 8, 9, 10, 11, 46, 47 2.7/4.5 5.5 (-34, 60, 8)/7.6 (39, 58, -8) 

Medial Frontal Gyrus 10, 11 0.8/0.4 6.3 (-9, 63, -15)/5.1 (4, 60, -17) 

Superior Temporal Gyrus 22, 38, 42 0.0/1.7 -999.0 (0, 0, 0)/6.1 (64, -1, 1) 

Inferior Frontal Gyrus 10, 45, 46, 47 0.0/1.5 -999.0 (0, 0, 0)/5.0 (46, 49, -2) 

Precuneus 7, 19 0.3/0.4 4.5 (-6, -78, 40)/5.0 (12, -79, 44) 

Precentral Gyrus 4, 6 0.3/1.1 4.5 (-34, -17, 67)/4.6 (49, -7, 54) 

Cuneus 19 0.2/0.3 4.1 (-6, -77, 36)/4.4 (19, -90, 29) 

Uncus 28 0.1/0.0 4.3 (-15, 2, -22)/-999.0 (0, 0, 0) 

Fusiform Gyrus 18 0.1/0.0 3.8 (-27, -90, -18)/-999.0 (0, 0, 0) 

Postcentral Gyrus * 0.0/0.1 -999.0 (0, 0, 0)/3.5 (43, -30, 61) 

Note: Voxels with z-values greater than 3.5 were matched with the Talairach Daemon database to obtain anatomical labels and converted 
into MNI space. For each hemisphere, the maximum z-value and MNI coordinate are provided. The volume of voxels in each area is given in 

cubic centimetres (cc) (*) = area not recognized by standard Brodmann Area atlas. 
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